In a single century science has converted the dimly lighted nights with their feeble flickering flames into artificial daytime. In this brief span of years the production of light has advanced far from the primitive flames in use at the beginning of the nineteenth century, but, as has been noted in another chapter, great improvements in light-production are still possible. Nevertheless, the wonderful developments in the last four decades, which created the arc-lamps, the gas-mantle, the mercury-vapor lamps, and the series of electric incandescent-filament lamps, have contributed much to the efficiency, safety, health, and happiness of mankind.

A hundred years ago civilization was more easily satisfied and an improvement which furnished more light at the same cost was all that could be desired. To-day light alone is not sufficient. Certain kinds of radiant energy are required for photography and other photochemical processes and a vast array of colored light is demanded for displays and for effects upon the stage. Man now desires lights of various colors for their expressive effects. He is no longer satisfied with mere light in adequate quantities; he desires certain qualities. Furthermore, he no longer finds it sufficient to be independent of daylight merely in quantity of light. In fact, he has demanded artificial daylight.

Doubtless the future will see the production of efficient light of many qualities or colors, but to-day many of the demands must be met by modifying the artificial illuminants which are available. Vision is accomplished entirely by the distinction of brightness and color. An image of any scene or any object is focused upon the retina as a miniature map in light, shade, and color. Although the distinction of brightness is a more important function in vision than the ability to distinguish colors, color-vision is far more important in daily life than is ordinarily appreciated. One may go through life color-blind without suffering any great inconvenience, but the divine gift of color-vision casts a magical drapery over all creation. Relatively few are conscious of the wonderful drapery of color, except for occasional moments when the display is unusual. Nevertheless a study of vision in nearly all crafts reveals the fact that the distinction of colors plays an important part.

In the purchase of food and wearing-apparel, in the decoration of homes and throughout the arts and industries, mankind depends a great deal upon the appearance of colors. He depends upon daylight in this respect and unconsciously often, when daylight fails, ceases work which depends upon the accurate distinction of colors. His color-vision evolved under daylight; arts and industries developed under daylight; and all his associations of color are based primarily upon daylight. For these reasons, adequate artificial illumination does not make mankind independent of daylight in the practice of arts and crafts and in many minor activities. In quality or spectral character, the unmodified illuminants used for general lighting purposes differ from daylight and therefore do not fully replace it. Noon sunlight contains all the spectral colors in approximately the same proportions, but this is not true of these artificial illuminants. For these reasons there is a demand for artificial daylight.

The “vacuum” tube affords a possibility of an extensive variety of illuminants differing widely in spectral character or color. Every gas when excited to luminescence by an electric discharge in the “vacuum” tube (containing the gas at a low pressure) emits light of a characteristic quality or color. By varying the gas a variety of illuminants can be obtained, but this means of light-production has not been developed to a sufficiently practicable state to be satisfactory for general lighting. Nitrogen yields a pinkish light and the nitrogen tube as developed by Dr. Moore was installed to some extent a few years ago. Neon yields an orange light and has been used in a few cases for displays. Carbon dioxide furnishes a white light similar to daylight and small tubes containing this gas are in use to-day where accurate discrimination of color is essential.

The flame-arcs afford a means of obtaining a variety of illuminants differing in spectral character or color. By impregnating the carbons with various chemical compounds the color of the flame can be widely altered. The white flame-arc obtained by the use of rare-earth compounds in the carbons provides an illuminant closely approximating average daylight. By using various substances besides carbon for the electrodes, illuminants differing in spectral character can be obtained. These are usually rich in ultra-violet rays and therefore have their best applications in processes demanding this kind of radiant energy. The arc-lamp is limited in its application by its unsteadiness, its bulkiness, and the impracticability of subdividing it into light-sources of a great range of luminous intensities.

Leave a Reply

Your email address will not be published. Required fields are marked *