I Do Things

Slideshow

The total eclipse of the sun of May 29, resulted in a striking confirmation of the new theory of the universal attractive power of gravitation developed by Albert Einstein, and thus reinforced the conviction that the defining of this theory is one of the most important steps ever taken in the domain of natural science. In response to a request by the editor, I will attempt to contribute something to its general appreciation in the following lines.

For centuries Newton’s doctrine of the attraction of gravitation has been the most prominent example of a theory of natural science. Through the simplicity of its basic idea, an attraction between two bodies proportionate to their mass and also proportionate to the square of the distance; through the completeness with which it explained so many of the peculiarities in the movement of the bodies making up the solar system; and, finally, through its universal validity, even in the case of the far-distant planetary systems, it compelled the admiration of all.

But, while the skill of the mathematicians was devoted to making more exact calculations of the consequences to which it led, no real progress was made in the science of gravitation. It is true that the inquiry was transferred to the field of physics, following Cavendish’s success in demonstrating the common attraction between bodies with which laboratory work can be done, but it always was evident that natural philosophy had no grip on the universal power of attraction. While in electric effects an influence exercised by the matter placed between bodies was speedily observed—the starting-point of a new and fertile doctrine of electricity—in the case of gravitation not a trace of an influence exercised by intermediate matter could ever be discovered. It was, and remained, inaccessible and unchangeable, without any connection, apparently, with other phenomena of natural philosophy.

Einstein has put an end to this isolation; it is now well established that gravitation affects not only matter, but also light.

Thus strengthened in the faith that his theory already has inspired, we may assume with him that there is not a single physical or chemical phenomenon—which does not feel, although very probably in an unnoticeable degree, the influence of gravitation, and that, on the other side, the attraction exercised by a body is limited in the first place by the quantity of matter it contains and also, to some degree, by motion and by the physical and chemical condition in which it moves.

It is comprehensible that a person could not have arrived at such a far-reaching change of view by continuing to follow the old beaten paths, but only by introducing some sort of new idea. Indeed, Einstein arrived at his theory through a train of thought of great originality. Let me try to restate it in concise terms.